Reaction of Bis(triethylphosphine)platinum and Pentakis(t-butyl isocyanide)ruthenium with Dicarba-nido-hexaboranes(8): Molecular Structures of [nido- $\mu_{4,5}-\left\{\right.$ trans $\left.-\left(\mathrm{Et}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}(\mathrm{H})\right\}-\mu_{5,6}-\mathrm{H}-2,3-\mathrm{C}_{2} \mathrm{~B}_{4} \mathrm{H}_{6}$], [closo-1,1-($\left.\mathrm{Et}_{3} \mathrm{P}\right)_{2}$ - [nido-2,3-Me $\mathbf{2}_{2}-2,3-\mathrm{C}_{2} \mathrm{~B}_{4} \mathrm{H}_{5}$]

By Geoffrey K. Barker, Michael Green, Thomas P. Onak, \dagger F. Gordon A. Stone, ${ }^{*}$ Charles B. Ungermann, \dagger and Alan J. Welch
(Department of Inorganic Chemistry, The University, Bristol BS8 1TS, and \dagger Department of Chemistry, California State University, Los Angeles, California 90032)

Summary Reaction of $\left[\mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{2}\right]$ with nido- $2,3-\mathrm{C}_{2} \mathrm{~B}_{4} \mathrm{H}_{8}$ or nido-2,3-Me ${ }_{2}-2,3-\mathrm{C}_{2} \mathrm{~B}_{4} \mathrm{H}_{6}$ affords, respectively, [nido- $\mu_{4,5^{-}}$ $\left\{\right.$ trans- $\left.\left.\left(\mathrm{Et}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}(\mathrm{H})\right\}-\mu_{5,6}-\mathrm{H}-2,3-\mathrm{C}_{2} \mathrm{~B}_{4} \mathrm{H}_{6}\right]$ and $\left[\right.$ nido $-\mu_{4,5}$ $\left\{\right.$ trans $\left.\left.-\left(\mathrm{Et}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}(\mathrm{H})\right\}-\mu_{5,6}-\mathrm{H}-2,3-\mathrm{Me}_{2}-2,3-\mathrm{C}_{2} \mathrm{~B}_{4} \mathrm{H}_{4}\right]$, which on pyrolysis yield closo-platinacarbaboranes with nonadjacent and adjacent carbon atoms respectively; in contrast $\left[\mathrm{Ru}\left(\mathrm{Bu}^{t} \mathrm{NC}\right)_{5}\right]$ reacts with nido-2,3- $\mathrm{Me}_{2}-2,3-$ $\mathrm{C}_{2} \mathrm{~B}_{4} \mathrm{H}_{6}$ to give $\left[\mathrm{RuH}\left(\mathrm{Bu}^{\mathrm{t}} \mathrm{NC}\right)_{5}\right]^{+}\left[\text {nido-2,3-Me }-2,3-\mathrm{C}_{2} \mathrm{~B}_{4} \mathrm{H}_{5}\right]^{-}$.

Following the discovery ${ }^{1}$ that d^{10} metal species can insert directly into 7 to 11 atom closo-carbaboranes we have explored the feasibility of obtaining metallacarbaboranes by a two-step oxidative-insertion by a transition metal species into a $\mathrm{B}-\mathrm{H}$ bond of 2,3 -dicarba-nido-hexaborane(8), followed by cage formation via elimination of H_{2}. Previous studies with nido- $2,3-\mathrm{C}_{2} \mathrm{~B}_{4} \mathrm{H}_{8}$ and nido- $2,3-\mathrm{Me}_{2}-2,3-\mathrm{C}_{2} \mathrm{~B}_{4} \mathrm{H}_{6}$ have focused on the reaction of metal halides with the carbaborane mono-anion ${ }^{2}$ or the high temperature reaction of the neutral carbaborane with $\mathrm{Fe}(\mathrm{CO})_{5}, \mathrm{Me}_{3} \mathrm{Ga}$, or $\mathrm{Me}_{3} \mathrm{In}^{3}$ affording closo-derivatives.

(1), $R=H$
(2), $R=M e$

(3)
(4)

, $\mathrm{C} ; \mathrm{O}, \mathrm{BH}$.

Scheme. i, $\left[\mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{2}\right]$; ii, Heat;

A hexane solution of bis(triethylphosphine)platinum \ddagger reacts at room temperature with nido-2,3-C $\mathrm{C}_{2} \mathrm{~B}_{4} \mathrm{H}_{8}$ or nido-2,3- $\mathrm{Me}_{2}-2,3-\mathrm{C}_{2} \mathrm{~B}_{4} \mathrm{H}_{6}$ to form, respectively, the crystalline $1: 1$ adducts (1) [colourless crystals, 48% yield, m.p. $40^{\circ} \mathrm{C}, \nu_{\mathrm{Pt}-\mathrm{H}} 2055 \mathrm{~s}$ and $\nu_{\mathrm{B}-\mathrm{H}} 2570 \mathrm{sh}, 2545 \mathrm{~s}, 2500 \mathrm{~s}$, and $2450 \mathrm{~s} \mathrm{~cm}{ }^{-1}$; n.m.r.: ${ }^{11} \mathrm{~B}$, (rel. extn. $\left.\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}\right) \delta-0 \cdot 46(2)$, $9 \cdot 21(1)$, and $52 \cdot 28(1)$ p.p.m.; ${ }^{31} \mathrm{P}$ (rel. extn. $\mathrm{H}_{3} \mathrm{PO}_{4}$) δ -15.50 p.p.m., $J(\mathrm{Pt}-\mathrm{P}) 2647.7, J(\mathrm{H}-\mathrm{P}) 9.8 \mathrm{~Hz}]$ and (2) [pale yellow crystals, 52%, m.p. ca. $25^{\circ} \mathrm{C}, \nu_{\mathrm{Pt}-\mathrm{H}} 2040 \mathrm{~s}$ and $\nu_{\mathrm{B}-\mathrm{H}} 2555 \mathrm{sh}, 2540 \mathrm{~s}, 2510 \mathrm{sh}$, and $2440 \mathrm{~s} \mathrm{~cm}{ }^{-1}$; n.m.r.: ${ }^{11} \mathrm{~B}$, $\delta 1.52(2), 10 \cdot 88(1)$, and $45 \cdot 6(1)$ p.p.m.; ${ }^{31}$ P, $\delta-15 \cdot 98$ p.p.m.,

Figure 1. Molecular structure and cage numbering for [nido-$\mu_{4,5}-\left\{\right.$ trans $\left.\left.-\left(\mathrm{Et}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}(\mathrm{H})\right\}-\mu_{5,6}-\mathrm{H}-2,3-\mathrm{C}_{2} \mathrm{~B}_{4} \mathrm{H}_{6}\right]$. Molecular parameters include $\mathrm{Pt}-\mathrm{P}(1),{ }_{2} \cdot 296(2)$; $\mathrm{Pt}-\mathrm{P}(2), 2 \cdot 285(2)$; $\mathrm{Pt}-\mathrm{B}(4)$, $2 \cdot 305(12) ; \mathrm{B}(4)-\mathrm{B}(5), 1 \cdot 728(14) ; \mathrm{B} / \mathrm{C}(3)-\mathrm{B}(4), 1 \cdot 685(13)$; and $\mathrm{C}(2)-\mathrm{B} / \mathrm{C}(3), 1 \cdot 478(12) \AA ; \angle \mathrm{P}-\mathrm{Pt}-\mathrm{P}, 167 \cdot 15(11)^{\circ}$.

[^0]$J(\mathrm{Pt}-\mathrm{P}) 2667 \cdot 8 \mathrm{~Hz}]$. Although, these observations indicated that in both cases an oxidative-insertion into a bridged $\mathrm{B}-\mathrm{H}$ bond had occurred affording isostructural molecules, the data did not elucidate the mode of bonding between the trans- PtHP_{2} fragment and the carbaborane cage. This was established by a single crystal X-ray diffraction study of (1).

Crystal data: (1), $\mathrm{C}_{14} \mathrm{H}_{38} \mathrm{PtB}_{4} \mathrm{P}_{2}, M 506 \cdot 8$, monoclinic, $a=10.970(4), b=11.587(3), c=9.459(3) \AA, \beta=114.47-$ $(2)^{\circ}, \quad U=1094 \cdot 3(6) \AA^{3}, \quad Z=2, D_{\mathrm{c}}=1.538, \mu\left(\right.$ Мо- $\left.K_{\bar{\alpha}}\right)=$ $68.8 \mathrm{~cm}^{-1}$, space group $P 2_{1}$ or $P 2_{1} / m$. The structure has been solved by conventional methods using 5106 independent reflections measured to $\theta=37.5^{\circ}\left(\mathrm{Mo}-K_{\alpha}\right.$ radiation, Syntex $P 2_{1}$ diffractometer, T ca. 215 K).§

Although Figure 1 shows the non-hydrogen skeleton of an asymmetric ordered molecule, the structure was solved on the assumption of space group $P 2_{1} / m$ with atoms $\mathrm{Pt}, \mathrm{P}(1)$, and $\mathrm{P}(2)$ and cage positions (1) and (2) on the crystallographic mirror plane. This treatment involved, however, partial disordering of the $\mathrm{P}(\mathrm{l})$ ethyl groups, and has led to a current R index of $0 \cdot 06$.

The carbaborane cage has the geometry of a nido pentagonal pyramid. Position (2) hosts one carbon atom with the other disordered over the symmetry related sites (3) and (6). The $\mathrm{B}(4)-\mathrm{B}(5)$ link is bridged by the trans $-\mathrm{PtH}\left(\mathrm{PEt}_{3}\right)_{2}$ fragment, the acute dihedral angle between the $\mathrm{PtB}(4) \mathrm{B}(5)$ and the $\mathrm{C}(2,3) \mathrm{B}(4,5,6)$ planes being $c a .52 \cdot 8^{\circ}$. The orientation of the platinum with respect to the η^{2}-bonded cage is thus related to that found in a number of comparable systems. ${ }^{4}$

At the present time terminal hydrogens have been located on all six cage atoms, while $\mathrm{H}(\mathrm{Pt})$ may reasonably be assumed to lie in, and bisect, the angle P-Pt-P. The remaining hydrogen atom presumably bridges the other facial $\mathrm{B}-\mathrm{B}$ link, i.e. $\mathrm{B}(5)-\mathrm{B}(6)$ for carbons at (2) and (3).

Pyrolysis of (1) $\left(100^{\circ} \mathrm{C}, 3\right.$ days) and (2) $\left(100^{\circ} \mathrm{C}, 2 \mathrm{~h}\right)$ in sealed tubes gave, respectively (Scheme), the yellow crystalline complexes (3) $\left[45 \%\right.$, m.p. $78-80^{\circ} \mathrm{C}$; n.m.r.: ${ }^{11} \mathrm{~B}, \delta-1 \cdot 75(3)$ and $7 \cdot 38(1)$ p.p.m.; ${ }^{31} \mathrm{P}, \delta-2 \cdot 53, J(\mathrm{Pt}-\mathrm{P})$ $3399.6 \mathrm{~Hz}]$ and (4) [80\%, m.p. 128-130 ${ }^{\circ} \mathrm{C}$; n.m.r.: ${ }^{11} \mathrm{~B}$, $\delta-50 \cdot 32(1)$ and $6 \cdot 32(3)$ p.p.m., ${ }^{31} \mathrm{P}, \delta-20 \cdot 23, J(\mathrm{Pt}-\mathrm{P})$ $2487.8 \mathrm{~Hz}]$. A single crystal X-ray study of (4) established the structure shown (Figure 2), where the adjacent carbon arrangement present in the nido-precursor (2) is still present.

Crystal data: (4), $\mathrm{C}_{16} \mathrm{H}_{40} \mathrm{PtB}_{4} \mathrm{P}_{2}, M 532 \cdot 8$, monoclinic, $a=15 \cdot 691(6), b=10 \cdot 118(6), c=15 \cdot 949(6) \AA, \beta=115 \cdot 76-$ $(3)^{\circ}, U=2280.5(18) \AA^{3}, Z=4, D_{\mathrm{c}}=1.552, \mu\left(\mathrm{Mo}-K_{\bar{\alpha}}\right)=$ $66 \cdot 1 \mathrm{~cm}^{-1}$, space group $P 2_{1} / a$. Refinement has converged at $R=0.067$ using 7237 independent observed data collected to $\theta=32.5^{\circ}$ at $c a .215 \mathrm{~K} . \S$

The geometry of the metallacarbaborane polyhedron is that of a highly distorted and 'slipped' pentagonal bipyramid, symmetrical (within the limits of the experiment) about the plane defined by $\mathrm{Pt}, \mathrm{B}(5)$, and $\mathrm{B}(7)$. The orientation and direction of slip of the PtP_{2} fragment with respect to the bonded $\mathrm{B}_{3} \mathrm{C}_{2}$ face is similar to that in the related icosahedral complex $\left[3,3-\left(\mathrm{Et}_{3} \mathrm{P}\right)_{2}-1,2,3-\mathrm{C}_{2} \mathrm{PtB}_{9} \mathrm{H}_{11}\right] .{ }^{5}$ Although the magnitude of the slip distortion in (4) is more difficult to estimate in the absence of a suitable reference plane, we take it to be considerably greater than in the analogous icosahedron for the following reasons: (i) $\mathrm{Pt}-\mathrm{C}$

Figure 2. Molecular structure of $\left[\text { closo-1,1-(} \mathrm{Et}_{3} \mathrm{P}\right)_{2}-2,3-\mathrm{Me}_{2}-$ $\left.1,2,3-\mathrm{PtC}_{2} \mathrm{~B}_{4} \mathrm{H}_{4}\right]$. Important molecular parameters are $\mathrm{Pt}-\mathrm{P}(11)$, $2 \cdot 2737(16) ; \mathrm{Pt}-\mathrm{P}(12), 2 \cdot 2854(21) ; \mathrm{Pt} \cdots \mathrm{C}(2), 2 \cdot 858(7) ; \mathrm{Pt} \cdots$. $\mathrm{C}(3)$, $2 \cdot 851(6) ; \mathrm{Pt}-\mathrm{B}(4), 2 \cdot 257(8) ; \mathrm{Pt}-\mathrm{B}(5), 2 \cdot 129(10) ; \mathrm{Pt}-\mathrm{B}(6)$, $2 \cdot 244(8)$; and $\mathrm{C}(2)-\mathrm{C}(3), 1 \cdot 427(10) \AA ; \angle \mathrm{P}-\mathrm{Pt}-\mathrm{P}, 105 \cdot 75(6)^{\circ}$.
distances are, on average, ca. $0 \cdot 28 \AA$ longer in the present complex, (ii) Pt-B links are consistently shorter, $\mathrm{Pt}-\mathrm{B}(4,6)$ by $c a .0 \cdot 03 \AA$ and $\mathrm{Pt}-\mathrm{B}(5)$ by $c a .0 \cdot 14 \AA$, and (iii) the 'folding' distortion, shown to be associated with slipping, and defined here as the acute dihedral angle between metalla-bonded BCCB and BBB sequences, is appreciably greater for the 7 -atom polyhedron ($21 \cdot 4^{\circ}$; cf. $9 \cdot 1^{\circ}$ for the 12-atom case).

Comparison of the ${ }^{11} \mathrm{~B}$ n.m.r. data for (3) and (4) established that the two molecules are not isostructural, and that in (3) the carbon atoms are unexpectedly ${ }^{6}$ non-adjacent. This is supported by preliminary X-ray studies, ${ }^{7}$ and also by the observation that (3) can be obtained $\left(60^{\circ} \mathrm{C}, 24 \mathrm{~h}\right)$ directly from reaction of $\left[\mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{2}\right]$ with closo $-1,6-\mathrm{C}_{2} \mathrm{~B}_{4} \mathrm{H}_{6}$. It is interesting that pyrolysis of (1) at temperatures lower than $100^{\circ} \mathrm{C}$ led only to incomplete conversion, there being no evidence for products containing adjacent carbon atoms. Conversely, pyrolysis of (2) for longer periods of time did not lead to products with non-adjacent cage carbons.

In contrast with the platinum systems, the reaction
 $\mathrm{Me}_{2}-2,3-\mathrm{C}_{2} \mathrm{~B}_{4} \mathrm{H}_{6}$ affords the ionic $1: 1$ adduct (5) $\left[\nu_{\mathrm{Ru}-\mathrm{H}}\right.$ $1840 \mathrm{~s} \mathrm{~cm}^{-1},{ }^{1} \mathrm{H}$ n.m.r. $\left.\left(\mathrm{C}_{6} \mathrm{D}_{6}\right) \tau 18.73\right]$, which is formulated as $\left[\mathrm{RuH}\left(\mathrm{Bu}^{\mathrm{t}} \mathrm{NC}\right)_{5}\right]^{+}\left[\text {nido-2,3-Me }-2,3-\mathrm{C}_{2} \mathrm{~B}_{4} \mathrm{H}_{5}\right]^{-}$arising by an oxidative insertion into a BH bond.

Crystal data: (5), $\left[\mathrm{C}_{25} \mathrm{H}_{46} \mathrm{RuN}_{5}\right]^{+}\left[\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{~B}_{4}\right]^{-}, M 620 \cdot 1$, monoclinic, $a=16 \cdot 309(13), b=21 \cdot 441(23), c=12 \cdot 190(9) \AA$ $\beta=96 \cdot 24(6)^{\circ}, U=4237(6) \AA^{3}, Z=4, D_{\mathrm{c}}=0.972, \mu($ Mо$\left.K_{\bar{\alpha}}\right)=3.85 \mathrm{~cm}^{-1}$, space group $P 2_{1} / a . \S$

[^1]The cation has idealized $C_{4 v}$ symmetry. ${ }^{\|}$Equatorial $\mathrm{Ru}-\mathrm{C}$ distances span the range $1 \cdot 95(4)$ to $1 \cdot 99(5) \AA$, whilst the unique axial $\mathrm{Ru}-\mathrm{C}$ separation (trans to H) is somewhat longer at $2 \cdot 07(6) \AA$. cis-Angles at the metal $\left\{86(2)-95(2)^{\circ}\right\}$ define an octahedral co-ordination within experimental error. All $\mathrm{Ru}-\mathrm{C}-\mathrm{N}$ and $\mathrm{C}-\mathrm{N}-\mathrm{C}$ sequences do not significantly deviate from linearity \{angles range from $167(7)$ to $178(4)$ and $169(6)$ to $172(6)^{\circ}$, respectively $\}$.

In the anion the cage atoms define a pentagonal pyramid in which the carbon atoms (unambiguously assigned via their terminal methyl groups) occupy adjacent facial sites. The basal $\mathrm{B}_{3} \mathrm{C}_{2}$ unit is planar to within $0.05 \AA$.

We thank NATO and the U.S.A.F. Office of Scientific Research for support.
(Received, 17th October 1977; Com. 1077.)
TCrystals of (5) were of relatively poor quality for a diffraction study, and to date we have been unsuccessful in obtaining physically meaningful refinement of the methyl carbon atoms of the isocyanide groups. Although 3626 diffraction data were measured to $\theta=30^{\circ}$ (Mo- K_{α} radiation, $T c a .298 \mathrm{~K}$) initial solution and refinement was concentrated on those 2337 reflections for which $(\sin \theta) / \lambda$ $\leqslant 0 \cdot 5$. R currently stands at $0 \cdot 18$ for the $[\mathrm{Ru}(\mathrm{CNC})]_{5}\left[\mathrm{C}_{4} \mathrm{~B}_{4}\right]$ skeleton (Ru anisotropic).
${ }^{1}$ G. K. Barker, M. Green, J. L. Spencer F. G. A. Stone, B. F. Taylor, and A. J. Welch, J.C.S. Chem. Comm., 1975, 804 ; and references therein.
${ }^{2}$ C. G. Savory and M. G. H. Wallbridge, J.C.S. Dalton, 1972, 918.
${ }_{3}$ A. Tabereaux and R. N. Grimes, J. Amer. Chem. Soc., 1972, 94, 4768; Inorg. Chem., 1974, 12, 792; L. G. Sneddon and R. N. Grimes, J. Amer. Chem. Soc., 1972, 94, 7161; L. G. Sneddon, D. C. Beer, and R. N. Grimes, J. Amer. Chem. Soc., 1973, 95, 6623; M. L. Thompson and R. N. Grimes, Inorg. Chem., 1972, 11, 1925; R. N. Grimes, D. C. Beer, L. G. Sneddon, V. R. Miller, and R. Weiss, Inorg.Chem., 1974, 13, 1138 ; W. M. Maxwell, V. R. Miller, and R. N. Grimes, J. Amer. Chem. Soc., 1976, 98, 4818; Inorg. Chem., 1976, 15, 1343 ; R. N. Grimes, W. J. Rademaker, M. L. Denniston, R. F. Bryan, and P. T. Greene, J. Amer. Chem. Soc., 1972, 94, 1865.
${ }^{4}$ M. R. Churchill, A. H. Reis, D. A. T. Young, G. R. Willey, and M. F. Hawthorne, Chem. Comm., 1971, 298; M. R. Churchill and A. H. Reis, J.C.S. Dalton, 1972, 1314; J. P. Brennan, R. Schaeffer, A. Davison, and S. S. Wreford, J.C.S. Chem. Comm., 1973, 354; O. Hollander, W. R. Clayton, and S. G. Shore, ibid., 1974, 604 ; N. N. Greenwood, J. A. Howard, and W. S. McDonald, J.C.S. Dalton, 1977, 37.
${ }^{5}$ D. M. P. Mingos, M. I. Forsyth, and A. J. Welch, J.C.S. Chem. Comm., 1977, 605.
${ }^{6}$ Gas phase reaction of $\mathrm{Fe}(\mathrm{CO})_{5}$ with nido-2,3- $\mathrm{C}_{2} \mathrm{~B}_{4} \mathrm{H}_{8}$ at $215{ }^{\circ} \mathrm{C}$ affords $\left[\left(\pi-2,3-\mathrm{C}_{2} \mathrm{~B}_{4} \mathrm{H}_{6}\right) \mathrm{Fe}(\mathrm{CO})_{3}\right]$ and $\left[\left(\pi-2,3-\mathrm{C}_{2} \mathrm{~B}_{3} \mathrm{H}_{7}\right) \mathrm{Fe}(\mathrm{CO})_{3}\right]$, and of $\mathrm{MMe}_{7}\left(\mathrm{M}=\mathrm{Ga}, 215^{\circ} \mathrm{C} ; \mathrm{M}=\mathrm{In}, 100^{\circ} \mathrm{C}\right)$ with nido-2,3-C $\mathrm{C}_{2} \mathrm{~B}_{4} \mathrm{H}_{8}$ gives [1-MeM-2,3-C2 $\mathrm{C}_{2} \mathrm{~B}_{4} \mathrm{H}_{6}$] (ref. 3).
${ }^{7}$ A. J. Welch, preliminary observations.
${ }^{8}$ G. K. Barker, A. M. R. Galas, M. Green, J. A. K. Howard, F. G. A. Stone, T. W. Turney, A. J. Welch, and P. Woodward, J.C.S. Chem. Comm., 1977, 256.

[^0]: \ddagger Reaction of $\left[\mathrm{Pt}\left(1,5-\mathrm{C}_{8} \mathrm{H}_{12}\right)_{2}\right]$ with 2 equiv. of $\mathrm{Et}_{3} \mathrm{P}$ in hexane affords yellow crystals of $\left[\mathrm{Pt}^{2}\left(\mathrm{PEt}_{3}\right)_{2}\right]\left[{ }^{31} \mathrm{P}\right.$ n.m.r. δ - $20 \cdot 1 \mathrm{p} . \mathrm{p} . \mathrm{m}$. , $J(\stackrel{+}{\mathrm{Pt}-\mathrm{P})} 3372 \mathrm{~Hz}]$, which reacts with H_{2} to give trans-[$\mathrm{PtH}_{2}\left(\mathrm{PEt}_{3}\right)_{2}$] and with 1 equiv. of $\mathrm{Et}_{3} \mathrm{P}$ to give [$\mathrm{Pt}(\mathrm{PEt})_{3}$] [${ }^{31} \mathrm{P} \mathrm{n}_{\mathrm{n}} . \mathrm{m} . \mathrm{r}$. δ $-42 \cdot 1$ p.p.m., $J(\mathrm{Pt}-\mathrm{P}) 4313 \mathrm{~Hz}]$.

[^1]: § The atomic co-ordinates of all three structures are available on request from the Director of the Cambridge Crystallographic Data Centre, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW. Any request should be accompanied by the full literature citation for this communication.

